|
What is Data Cleaning in Data Science?
π Introduction Data Cleaning (or Data Preprocessing) is the process of detecting, correcting, or removing inaccurate, incomplete, or irrelevant data from datasets. It is a crucial step in data science and machine learning, as poor-quality data can lead to incorrect insights and inaccurate predictions. Data Science Course in Pune π‘ Fact: 80% of a data scientistβs time is spent cleaning and preparing data! π οΈ Why is Data Cleaning Important? πΉ Improves Data Accuracy β Reduces errors and inconsistencies πΉ Enhances Model Performance β Clean data leads to better predictions πΉ Prevents Bias β Eliminates duplicate or misleading records πΉ Ensures Data Consistency β Standardizes formats and missing values π Example: Imagine a company analyzing customer transactions. If the dataset contains missing prices, incorrect dates, or duplicate entries, the sales analysis will be flawed. π Key Steps in Data Cleaning 1οΈβ£ Handling Missing Data β Techniques to fill missing values: Drop missing values (if the dataset is large) Fill with mean/median/mode (for numerical data) Use forward or backward fill (for time-series data) π Example in Python: python Copy Edit import pandas as pd df.fillna(df.mean(), inplace=True) # Fill missing values with mean 2οΈβ£ Removing Duplicates β Duplicates can skew analysis and lead to incorrect conclusions. π Example in Python: Data Science Training in Pune python Copy Edit df.drop_duplicates(inplace=True) 3οΈβ£ Standardizing Data Formats β Ensure uniform formats for: Date formats (YYYY-MM-DD vs. MM/DD/YYYY) Text cases (uppercase/lowercase) Units of measurement (e.g., km vs. miles) π Example in Python: python Copy Edit df['date_column'] = pd.to_datetime(df['date_column']) # Standardize date format df['name'] = df['name'].str.lower() # Convert text to lowercase 4οΈβ£ Handling Outliers β Outliers can distort analysis and affect ML models. πΉ Techniques: Remove extreme values using IQR (Interquartile Range) Use log transformations to normalize skewed data π Example in Python: python Copy Edit Q1 = df['column'].quantile(0.25) Q3 = df['column'].quantile(0.75) IQR = Q3 - Q1 df = df[(df['column'] >= (Q1 - 1.5 * IQR)) & (df['column'] <= (Q3 + 1.5 * IQR))] 5οΈβ£ Correcting Data Entry Errors β Common issues: Typos (e.g., "USA" vs. "U.S.A") Inconsistent naming ("Male" vs. "M") Incorrect spellings π Example in Python: Data Science Classes in Pune python Copy Edit df['country'] = df['country'].replace({'U.S.A': 'USA', 'United States': 'USA'}) |
| Free forum by Nabble | Edit this page |
